First Human Cellular Reprogramming Trial Cleared by the FDA
- This approach uses an inducible system in human beings.
- Life Biosciences is engaging in a clinical trial against two age-related eye diseases.
- This approach uses partial cellular reprogramming, which has never before been tried in humans.
Life Biosciences has announced that its trial of cellular reprogramming aimed at two age-related vision diseases has received a go-ahead from the FDA. We spoke with the company’s CSO to get more details.
Life Biosciences, the biotech company based on Harvard professor David Sinclair’s research into cellular reprogramming, stunned everyone last year by announcing that its clinical trial, the first-ever human trial of a reprogramming technology, will commence in the first quarter of 2026. A few days ago, the company cleared the last major hurdle on its way to this ambitious goal by receiving an Investigational New Drug (IND) clearance from the FDA to test the experimental drug ER-100 against optic neuropathies.
ER-100’s story begins with highly successful experiments in rodents, where Sinclair’s team used their own partial cellular reprogramming recipe to restore vision after a severe optic nerve injury, and then proceeded to a successful trial in non-human primates. This upcoming trial is focused on open-angle glaucoma (OAG) and non-arteritic anterior ischemic optic neuropathy (NAION), which is a “stroke of the eye” that can cause sudden blindness. Both diseases are age-related, with NAION being the most common acute optic neuropathy in adults over fifty.
Life Biosciences uses a proprietary reprogramming cocktail based on three out of four of the original Yamanaka factors: OCT-4, SOX-2, and KLF-4 (OSK). The company believes that this approach solves several problems that plagued early reprogramming research.
“It’s incredibly meaningful to see this science reach clinical testing after more than 30 years of work,” Sinclair said to Lifespan News. “I’m grateful to the many students, collaborators, and partners whose dedication helped bring these ideas from the lab to this milestone. For me personally, it’s deeply rewarding to see this work move into the clinic, with the potential to protect and restore vision for patients and to help unlock a new generation of therapies that target the diseases of aging across tissues.”
As this is the first reprogramming clinical trial, and one of the first longevity therapy clinical trials, many people in this industry view it as a seismic event. “This is a huge milestone for the entire partial reprogramming field, and it aligns with what we’ve seen as well: the FDA has been notably open and forward-thinking in how it engages with this approach,” said Yuri Deigin, CEO of YouthBio, which is developing its own anti-Alzheimer’s reprogramming-based therapy. “It’s also a strong signal for the broader longevity space that regulators are increasingly willing to evaluate therapies that aim to modify upstream epigenetic drivers of aging, rather than only treating downstream symptoms.”
We have long followed Life Biosciences and interviewed both David Sinclair and Life CSO Sharon Rosenzweig-Lipson. Following the FDA clearance announcement, we spoke with Sharon again to get her perspective on the trial timeline, Life Biosciences’ experience of interacting with the FDA, and the company’s future trajectory.
When are you planning to start the actual trial, and when can we expect results?
We’re in the final stages of getting our first site activated. We expect that to happen within a few weeks and to start enrolling patients right after that. By March, we’ll have begun enrolling patients.
And the ETA on results?
Because it’s a gene therapy, we’re going to enroll patient number one, wait 28 days, then enroll patients two and three, wait another 28 days. Then we’ll make decisions about going up and down on the dose. It’s going to take time to get through that, but we hope to have enough information by the end of the year on one or more doses. This will allow us to make decisions about whether we go to Phase 2 and start planning the next stage. We’re as eager as everybody else to move this as quickly as possible.
Usually, partial reprogramming involves pulsing with very carefully calculated doses so that the cells don’t undergo dedifferentiation. I understand that your therapy is “one-shot” – based on a single round of continuous administration.
I want to separate what we call partial reprogramming from what others do, which is transient reprogramming. Sometimes, you see transient reprogramming where you give it one or two days, wait a few more days in animals, then give it one or two more days. That’s often done with all four factors.
That’s not what we’re doing. We’re going to give doxycycline systemically – it’s an inducible system – keeping OSK on for an eight-week period. We have data showing that we can do it not just for two months, but for three months, or even beyond that in mice, demonstrating that we can achieve good reprogramming and good safety with a more continuous expression system.
Do you see at least some shift toward dedifferentiation with more time on the therapy?
We do not. What’s amazing about using OSK is that it’s not causing de-differentiation. It’s resetting the epigenetic code. That code, which made normal hearts, lungs, livers, retinal ganglion cells, gets degraded as we age or with age-related diseases. Our therapy resets that code back to a healthy, youthful state, but not all the way back, not to pluripotency. Cell identity is maintained.
It looks like you cracked one of the hardest problems in partial reprogramming by taking out the M out of the original four-factor Yamanaka cocktail.
Exactly. Taking the M out makes it impossible to go all the way back. You just can’t push the system hard enough.
What can you tell me about your interactions with the FDA? Was there something that pleasantly surprised you?
We met with the FDA almost two years ago to plan for our tox studies and make sure that they bought into what we were doing in a way that we could move it forward. We went through a series of questions and together with our recommendations and their recommendations, we outlined a path for our toxicology studies, distribution studies, and what they wanted to see us do clinically. We were very conscious of all the FDA guidance. Overall, we had a very smooth interaction with the FDA as it related to our IND clearance.
Since it’s the very first human trial of cellular reprogramming, you would think they would be extremely cautious to the point of seriously slowing you down, but you’re saying it was smooth sailing?
Our experience was very collaborative and positive. We have a lot of data that we walked into the room with supporting the safety profile. We had data in mice, data in non-human primates. We had our IND studies. We walked in with a lot of safety data, and I think that really helped.
Do you think this signals a broader change in the FDA’s attitude toward longevity therapies in general?
It’s hard for me to say. It’s a one-off, right? We haven’t put seven things through the FDA, so it’s hard to get a bigger picture of what this means for them. We’re pleased that for what we did, it was positively perceived and most importantly, we got to our “may proceed” letter without any major issues.
If we look past the indications you’re currently working with, what’s next for Life Biosciences?
We’ve already talked publicly about having nice data on reprogramming in the liver, which is quite exciting. We’re continuing to work on the liver, and you may see in the next few months a little more information on some other indications we’re working on. We’re excited that we’re continuing to achieve proof of concepts across a range of indications.





